THE INFRARED STUDY OF TRIMETHYLANTIMONY(V) DERIVATIVES CON-TAINING Sb-O BONDS

M. SHINDÖ AND R. OKAWARA

Department of Applied Chemistry, Osaka University, Higashinoda, Miyakojima, Osaka (Japan) (Received October 14th, 1965)

The structures of antimony(V) compounds containing alkyl or aryl groups have not yet been clearly established. In the case of $(CH_3)_3SbX_2$ (X = Cl, Br or I), Wells¹ showed on the basis of the X-ray diffraction that these compounds have a trigonal bipyramidal configuration with the C_3Sb group forming the trigonal plane and with the halogens at the apices. However, the Sb-X bond length was somewhat greater than the sum of the covalent radii of Sb and X atoms. Hence he could not conclude with certainty that the halogen atoms were covalently bound.

On the basis of X-ray diffraction studies, Polynova *et al.*² concluded that $(C_6H_5)_3SbCl_2$ also had a trigonal bipyramidal structure. Dipole moment measurement of $(C_6H_5)_3SbCl_2^3$ indicated that the molecule was symmetrical and that the halogen atoms were covalently bound to the antimony. Also conductivity measurements of $(C_6H_5)_3SbCl_2$ in acetonitrile⁴ gave no evidence of chloride ion. These results suggest that the Sb–Cl bonds in $(C_6H_5)_3SbCl_2$ are predominantly covalent. On the other hand, on the basis of the infrared spectroscopic investigations Long *et al.*⁵ conclude that, in the solid state, trimethylantimony dinitrate, and oxybis(trimethylantimony) derivatives are ionic compounds, and that in triphenylantimony dinitrate the nitrate group is considerably more covalent than in trimethylantimony dinitrate⁶.

To further elucidate the character of the Sb-O bond in trimethylantimony(V) compounds, we are reporting on the preparation, properties and the infrared studies of the following series of compounds; $(CH_3)_4SbX$ (X = I or NO₃), $(CH_3)_3SbX_2$ (X = Cl, Br, OCOH, OCOCH₃, OCOC₂H₅, OCOC₃H₇, OCOC₆H₅ or NO₃) and X(CH₃)₃-SbOSb(CH₃)₃X (X = Cl, Br or NO₃).

ENPERIMENTAL

Preparation of starting materials

 $(CH_3)_3SbX_2$ (X = Cl or Br), $(CH_3)_3SbO^*$, X(CH₃)₃SbOSb(CH₃)₃X (X = Cl or Br), and $(CH_3)_4SbI$ were prepared by the methods indicated in the reaction scheme (next page).

Trimethylantimony dicarboxylates

 $(CH_3)_3Sb(OCOH)_2$ and $(CH_3)_3Sb(OCOCH_3)_2$. To 3 g of trimethylantimony oxide 10 ml of formic acid was added. Then the reaction immediately proceeded exothermic-

^{*} Elementary analysis indicated that the material referred to as $(CH_3)_3SbO$ is either $(CH_3)_3Sb(OH)_2$ or $(CH_3)_3SbO \cdot H_2O$. However, since the exact formula has not yet been established, for convenience, the formula $(CH_3)_3SbO$ will be used in this paper.

⁴ Although the intermediate compound such as the type of $(CH_3)_3Sb(OH)X$ was previously reported by Friedländer¹² and Morgan *et al.*¹³, we could obtain only its condensation product, $X(CH_3)_3SbOSb(CH_3)_3X$.

ally to give a clear solution. The excess formic acid was distilled off under reduced pressure. The white solid obtained was recrystallized from ligroin to give colorless scale-like crystals almost quantitatively; m.p. $\$1^\circ$. (Found: C, 23.18; H, 4.23. $C_sH_{11}O_4Sb$ calcd.: C, 23.38; H, 4.32%.) Mol. wt. found cryoscopically in C_6H_6 , 258, 257, 257, at concentrations 0.96, 1.60 and 1.89% w(sample)/W(solvent) respectively; calcd. for monomer, 257.

Trimethylantimony diacetate was prepared in the same way; m.p. $80.5-81^\circ$. (Found: C, 29.69; H, 5.21. C₄H₁₅O₄Sb calcd.: C, 29.51; H, 5.31%.) Mol. wt. found cryoscopically in C₆H₆. 285, 293, 279. at concentrations 0.76, 1.15 and 1.71% w(sample)/W(solvent) respectively; calcd. for monomer, 285.

 $(CH_3)_3Sb(OCOC_2H_5)_2$ and $(CH_3)_3Sb(OCOC_3H_7)_2$. Trimethylantimony oxide (3 g) was dissolved in 10 ml of propionic acid. Then the excess propionic acid was distilled off under reduced pressure, followed by fractional distillation. A colorless slightly viscous liquid, trimethylantimony dipropionate, was obtained without decomposition; b.p. 110°/6 mm, n_D^{25} 1.4795. (Found: C, 34.25; H, 6.36. C₉H₁₉O₄Sb calcd.: C, 34.53; H, 6.13°₄.)

By a similar method, trimethylantimony dibutyrate was prepared; b.p. $128^{\circ}/$ 2.5-3 mm. (Found: C, 38.83; H, 6.63. $C_{11}H_{23}O_4$ Sb calcd.: C, 38.73; H, 6.81 %.)

 $(CH_3)_3Sb(OCOC_6H_5)_2$. An equivalent amount of benzoic acid was added to trimethylantimony oxide in benzene. When the mixture was heated, a clear solution was obtained. After cooling this solution, colorless crystals were obtained. The product was purified by recrystallization from benzene; m.p. 154°. (Found: C, 50.43; H, 4.93. $C_{17}H_{19}O_4Sb$ calcd.: C, 49.90; H, 4.69 %). All of these dicarboxylates were soluble in most common organic solvents.

Nitrates

Tetramethylstibonium nitrate, $(CH_3)_4SbNO_3$. Tetramethylstibonium iodide (3.2 g) was dissolved in moist acetone, and silver nitrate (1.8 g) in moist acetone was added

to this solution. After heating about one hour on a water bath, precipitated silver iodide was filtered off. Then the filtrate was evaporated to give a white solid. Recrystallization from moist acetone gave colorless crystals; m.p. > 260°. (Found: C, 20.00; H, 4.97; N, 5.57. $C_4H_{12}NO_3Sb$ calcd.: C, 19.70; H, 4.96; N, 5.74%.)

Trimethylantimony dinitrate, $(CH_3)_3Sb(NO_3)_2$. To 2 g (0.011 mole) of trimethylantimony oxide 1.2 ml (0.022 mole) of 60 % nitric acid was added in 20 ml acetone. A clear solution was obtained immediately. After removal of acetone, the solid obtained was recrystallized from methanol to give colorless crystals; m.p. 149°. (Found: C, 12.55; H, 3.18; N, 9.49; $C_3H_9N_2O_6Sb$ calcd.: C, 12.39; H, 3.12; N, 9.63%.) Mol. wt. found cryoscopically in C_6H_6 , 263 at concentration 1.31% w(sample)/W(solvent); calcd. for monomer, 291. This compound reacts easily with KBr to give trimethylantimony dibromide and potassium nitrate in water as shown in the reaction scheme. For example, trimethylantimony dinitrate (3 g) was dissolved in water, and potassium bromide (3 g) in water was added to this solution. Then the mixture was heated on a water bath for about ten minutes. Colorless crystals, trimethylantimony dibromide, were obtained; m.p. 198° (decomp.).

Oxybis(trimethylantimony) dinitrate, $[(CH_3)_3(NO_3)Sb]_2O$. Addition of 0.6 ml (0.011 mole) of 60 % nitric acid to 2 g (0.011 mole) of trimethylantimony oxide in moist acetone gave a clear solution. After removal of the solvent, a white solid was obtained. It was recrystallized from acetone containing a small amount of water. This compound decomposes at 267°. (Found: C, 15.55; H, 3.85; N, 6.15. C₆H₁₈N₂O₇Sb₂ calcd.: C, 15.21; H, 3.83; N, 5.91°.) Of these nitrates, tetramethylstibonium nitrate is insoluble in common organic solvents but the other two compounds are soluble or slightly soluble in common polar organic solvents.

Fig. 1. IR spectra of $(CH_2)_3Sb(OCOR)_2$ and $(CH_3)_3SbBr_2$ — mulls in nujol or HCB; solution in CCl_4 or $CHBr_3$.

Infrared spectra

The infrared spectra from 4000 to 400 cm⁻¹ were recorded using a Hitachi EPI-2G spectrophotometer equipped with gratings. The spectra in the solid state were determined as mulls in nujol or hexachlorobutadiene (HCB) using KBr or TII plates. Spectra of liquid compounds such as trimethylantimony dipropionate or dibutyrate were obtained as liquid films. The spectra in solution were measured in carbon tetrachloride, chloroform or bromoform.

In obtaining the spectra of the nitrates, TII plates were used because the nitrates readily reacted with the KBr plates according to the reaction described above. This reaction also takes place in KBr disks, therefore the spectra of trimethylantimony dinitrate in KBr were different from those of the nujol mulls. In the KBr disks the band at about 1350 cm⁻¹ due to potassium nitrate¹⁴ was observed while the band at 1527 and 1290 cm⁻¹ decreased in relative intensity.

On the other hand, when TII plates were used, the surfaces of the plates in contact with the solutions became slightly dark after a prolonged measurement, but no bands due to thallous nitrate¹⁵ were observed.

These results are shown in Figs. 1 and 2, and Tables 1 and 2.

(CH ₃) ₂ SbBr ₂ ^a	R = H		Assignment	
	Solid=	Solution ⁵		
	3245 vw	3289 vw		
3008 vw	3012 w	3021 VW	CH ₂ deg. str.	
2915 VW	2933 W	2941 VW	CH ₃ sym. str.	
	2865 w 2849 w	2857 m	C-H str.	
	2841 w	2703 vw		
1772 vw				
1723 vw				
	1647 S 1634 S	1653 s	C = O str.	
1400 w	1403 w	1404 vw	CH3 deg. def.	
	1377 m) 1366 (sh.) w j	1362 m	C-H bend.	
	1250 S Ì 1231 S	1233 s	C-O str.	
1209 vw		1221 m	CH ₃ sym. def.	
872 s	875 s 856 s	862 s	CH ₃ rock.	
	S40 (sh.) 76≥ s	767 s	COO def.	
569 m	583 m 535 vw	581 m	SbC ₃ deg. str. SbC ₃ sym. str. (?)	

TABLE I

infrared frequencies of $(CH_3)_3Sb(OCOR)_2$ and $(CH_3)_3SbBr_2$ (in cm⁻¹)

^a Mulls in nujol or hexachlerobutadiene. ^b CCl₄ or CHBr₃ solution.

RESULTS AND DISCUSSION

In the spectrum of trimethylantimony diformate taken in nujol mulls, strong absorption bands are found at 1647, 1634, 1250 and 1231 cm⁻¹. In the spectra of solutions these bands appear at 1653 and 1233 cm⁻¹. These bands are assigned to the

Fig. 2. IR spectra of methylantimony halides and nitrates —— mulls in nujol or HCB; ···· solution in CHCl₃ or CHBr₃.

stretching vibrations of a carboxyl group having a reduced symmetry similar to that of organic esters. The stretching frequencies associated with the -COO- group of the other carboxylates studied are shown in Table 3.

Data from the spectra obtained in the solid state show that the absorption bands are split, possibly due to crystal lattice effects. The corresponding bands in the spectra of the liquid films and of the solutions occur at essentially the same frequencies as are observed in the solid state spectra. Thus it can be assumed that the configuration of the carboxyl group is the same in the solid and liquid states and in solution.

The band assigned to the C=O stretching vibration occurs at a lower frequency and that assigned to the C-O stretching vibration occurs at a higher frequency than the frequencies of the corresponding modes in organic esters. This can be ascribed to the increased polarity of the Sb-O bond in antimony compounds compared to the C-O bond in organic esters. The facts that the dicarboxylates are soluble in organic

oHa) ShIa	(CII_{a}) , $ShNO_{a}^{\mu}$	$(CH_{a})_{a}Sb(NO_{a})$		[(CH _a) _a (NO _a)Sh]	"O" [(CII.,), IbrSb), Ou	Assignment
		Solida	Solution ^b	-		
		w otof	3040 W	-	•	
003 W 015 VW	3007 W	00 01 VAV	MA 6101	301 VW	3004 VW	CII, deg. str. CII, sum str
		a707 vw	WY 7142	2740 VW	AVA 11/07	me inke ^e n o
				MA (677		
		2010 VW		MA 0007		
		1933 VW				
MV 077	MA 5621	1812 VW		W1 2081		
739 VW	17.48 vw	1701 VW	WV 8.77 I	MA 4761		
		1545 (slt.) s [More and and a second s
		15.2 %	1530 \$	14,50 %		NO ₂ amisym, str.
w tot	11425 m	w tot t	w Eot I	ndot (sh.) w	1309 W	CH _n deg. def.
	1339.8					NO _a deg. str.
		1 2 7 4 8 1 2 2 1	1.282.8	1200 8		NO _a sym. str.
242 VW	MA 1271	W 7171	w 147 t	1236 W		
412 VW	1200 VW	M (1771	1 230 W	W 4771	W +221	CII _a sym. def.
	MAA Shoi	ofis e l				(2) Shu shu su
		950 s]	054 m	1018 m		NO str.
807 s	875 s }	Nut s	stor m	S62 m	858 m	CII ₃ rock.
	826 w					NO ₃ def.
		M £6.2	as tead	SIS III	:	NO ₃ def.
			1	787 8	786 s	SbO -Sb antisym. str.
		MI (172	725 W	111 61 6		NO ₃ del. NO dat
	700 VW	" Int		11 m /		NO. def.
570 m	57.4 m	5 ⁸ 0 m	w £73	532 W	579 IN 528 W	ShC ₃ deg. str. ShC ₃ sym. str.
		(MA 075				
		5.21 VW				(?)

J. Organometal. Chem., 5 (1966) 537-544

542

TABLE 3

$R = CH_3$		$R = C_2 H_5$	$R = C_3 H_7$	$R = C_6 H_5$	Assignment
Solida	Solutionb	liquid film	liquid film	solida	
1637 s 1600 (sh.) s	1650 s	1647 s	1658 s 1653 s	1642 s) 1631 s	C=0 str.
1287 s 1274 (sh.) s	1286 s	1231 5	1220 S	1323 s) 1299 s)	C–O str.

	STRETCHING	FREQUENCIES OF	-COO- group in	(CH ₁),Sb(OCOR).	(in cm ⁻¹)
--	------------	----------------	----------------	------------------------------	------------------------

^a Mulls in nujcl or hexachlorobutadiene. ^b CCl₄ or CHBr₃ solution.

solvents and that some of them are distillable, suggest that the carboxyl groups are bound to the trimethylantimony group in a manner that is similar to organic esters.

The spectrum of trimethylantimony diformate in solution also suggests that the C_3Sb group is a trigonal plane with the antimony situated at the center. Only one strong band at 581 cm⁻¹ was observed in the KBr region. This is due to the C_3Sb degenerate stretching vibration. A planar configuration would have only one infrared active Sb-C stretching mode. Cryoscopic molecular weight determination of trimethylantimony diformate and diacetate in benzene shows that these carboxylates are monomers. This fact also supports the conclusion that in both the solid and solution states $(CH_a)_3Sb(OCOR)_2$ has a trigonal bipyramidal configuration, similar to $R_3SbX_2^{1,2}$, as shown in Fig. 3.

From Fig. 2 and Table 2, it is clear that, except for three additional bands at 1339 (s), 826 (w) and 706 (vw) cm⁻¹, the spectra of tetramethylstibonium nitrate are quite similar to those of tetramethylstibonium iodide. The latter compound is reported to have an ionic structure, $(CH_3)_4Sb^+I^-$, where the $(CH_3)_4Sb^+$ group has T_d symmetry.¹⁶. Therefore, these three additional bands are satisfactorily assigned to a nitrate ion having D_{3h} symmetry. In the case of trimethylantimony dinitrate, six bands associated with the NO₃ group are obtained in the NaCl region as shown in Fig. 2. Obviously these six absorption bands are not associated with the nitrate ion having D_{3h} symmetry, but correspond to those of NO₃ group having C_{2v} or lower symmetry. In this compound the antisymmetric stretching frequencies of the NO₂ group are somewhat lower and the symmetric modes are somewhat higher than those of the nitric ester, $CH_3ONO_2^{17}$. However, these trends may be explained by considering the polarity of the Sb-O bond as previously discussed. Thus trimethylantimony dinitrate has a trigonal bipyramidal configuration analogous to the structures of the dicarboxylates as is shown in Fig. 3. The double charged ionic structure, $(CH_a)_3Sb^{2+}$, proposed

(a) $Me_3Sb(OCOR)_2$ (b) $Me_3Sb(NO_3)_2$ Fig. 3. Structures of $(CH_3)_3Sb(OCOR)_2$ and $(CH_3)_3Sb(NO_3)_2$.

J. Organometal. Chem., 5 (1966) 537-544

by Long et al.5 is based on spectra obtained in KBr disks. Since trimethylantimony dinitrate readily reacts with KBr to form nitrate ion, the basis for this conclusion is apparent. In solution and as nujol mulls, however, the spectra reveals that the nitrate group has C_{2r} symmetry.

Oxybis(trimethylantimony) dinitrate has also been shown to contain a nitrate group with C_{2r} or lower symmetry. Thus in Fig. 2, and Table 2 five bands ascribable to a NO₃ group are readily apparent. A sixth band occurring around 750 cm⁻¹ is probably masked by the strong Sb–O–Sb antisymmetric stretching mode. However, in this compound, the antisymmetric stretching frequencies of the NO, group are somewhat lower than those of trimethylantimony dinitrate. This suggests that the Sb-O bonds in this compound are intermediate in character between covalent and ionic bonds. Comparison with the spectrum of oxybis(trimethylantimony) dibromide reveals no important differences between the two compounds other than that due to the nitrate group. This further supports the conclusion that the bonding in this compound is of intermediate polarity.

ACKNOWLEDGEMENT

The authors express their thanks to Professor C. R. DILLARD* for helpful discussions of our manuscript.

SUMMARY

Some trimethyl-substituted antimony(V) compounds containing Sb-O bonds such as trimethylantimony dicarboxylates, dinitrate or oxybis(trimethylantimony) dinitrate, were prepared. From the infrared spectroscopic investigation, both in the solid and in solution, and cryoscopic molecular weight determinations in benzene, the following results were obtained. (1) $(CH_a)_a SbX_{\star}$ (where X is OCOR or NO₃) has a trigonal bipyramidal configuration with the C₂Sb group in the same plane and X at the apices. (2) The Sb-O bond in $(CH_3)_3SbX_2$ (where X is OCOR or NO₃) is covalent in nature while the Sb-O bond in oxybis(trimethylantimony) dinitrate is intermediate in character between covalent and ionic bonds.

REFERENCES

- 1 A. F. WELLS, Z. Krist., 99 (1938) 367.
- 2 T. N. POLVNOVA AND M. A. PORAI-KOSHITS, J. Struct. Chem. (USSR) (Eng. transl.), 1 (1960) 146.

- K. A. JENSEN, Z. Anorg. Aligem. Chem., 250 (1943) 257.
 L. KOLDITZ, M. GITTER AND E. RÖSEL, Z. Anorg. Aligem. Chem., 316 (1962) 270.
 G. G. LONG, G. O. DOAK AND L. D. FREEDMANN, J. Am. Chem. Soc., 86 (1964) 209.
 G. O. DOAK, G. G. LONG AND L. D. FREEDMANN, J. Organometal. Chem., 4 (1965) 82.
- 7 G. T. MORGAN AND V. E. YARSLEY, Proc. Roy. Soc. (London), (1926) 523. 8 H. LANDOLT, Ann. Chem., 78 (1851) 96.
- 9 A. HANTZSCH AND H. HIBBERT, Ber., 40 (1907) 1508. 10 G. T. MORGAN AND V. E. YARSLEY, J. Chem. Soc., 127 (1925) 184.

- 11 C. LÖWIG, Ann. Chem., 97 (1856) 327.
 12 S. FRIEDLÄNDER, J. Prakt. Chem., (1) 70 (1857) 449.
 13 G. T. MORGAN AND V. E. YARSLEY, Proc. Roy. Soc. (London), (1926) 534.
 14 F. A. MILLER AND C. H. WILKINS, Anal. Chem., 24 (1952) 1268.
- 15 R. NEUMAN AND R. S. HALFORD, J. Chem. Phys., 18 (1950) 1276, 1291.
- 16 H. SIEBERT, Z. Anorg. Allgem. Chem., 273 (1953) 161. 17 B. M. GATEHOUSE, S. E. LIVINGSTONE AND R. S. NYHOLM, J. Chem. Soc., (1957) 4222.

^{*} Fulbright Research Fellow in Chemistry at Osaka University, 1965–1966.

J. Organometal. Chem., 5 (1966) 537-544